Rodrigo planted flowers in a section of a circular garden as shown. Calculate the closest area of this sector of the garden to the nearest whole number.

Respuesta :

Answer:

[tex]A = 118ft^2[/tex]

Step-by-step explanation:

See attachment for complete question.

From the attachment, we have:

[tex]\theta = 80[/tex]

[tex]r = 13ft[/tex] -- Radius

Required

Determine the area of the sector

Area (A) of a sector is calculated as:

[tex]A = \frac{\theta}{360} * \pi r^2[/tex]

Substitute values for r and [tex]\theta[/tex]

[tex]A = \frac{80}{360} * \pi 13^2[/tex]

[tex]A = \frac{80}{360} * \pi *169[/tex]

[tex]A = \frac{80*169}{360} * \pi[/tex]

[tex]A = \frac{13520}{360} * \pi[/tex]

Take [tex]\pi[/tex] as [tex]\frac{22}{7}[/tex]

[tex]A = \frac{13520}{360} * \frac{22}{7}[/tex]

[tex]A = \frac{13520 * 22}{360 * 7}[/tex]

[tex]A = \frac{297440}{2520}[/tex]

[tex]A = 118ft^2[/tex]-- approximated