Answer:
[tex]A = 118ft^2[/tex]
Step-by-step explanation:
See attachment for complete question.
From the attachment, we have:
[tex]\theta = 80[/tex]
[tex]r = 13ft[/tex] -- Radius
Required
Determine the area of the sector
Area (A) of a sector is calculated as:
[tex]A = \frac{\theta}{360} * \pi r^2[/tex]
Substitute values for r and [tex]\theta[/tex]
[tex]A = \frac{80}{360} * \pi 13^2[/tex]
[tex]A = \frac{80}{360} * \pi *169[/tex]
[tex]A = \frac{80*169}{360} * \pi[/tex]
[tex]A = \frac{13520}{360} * \pi[/tex]
Take [tex]\pi[/tex] as [tex]\frac{22}{7}[/tex]
[tex]A = \frac{13520}{360} * \frac{22}{7}[/tex]
[tex]A = \frac{13520 * 22}{360 * 7}[/tex]
[tex]A = \frac{297440}{2520}[/tex]
[tex]A = 118ft^2[/tex]-- approximated