Respuesta :

Answer:

Please check the explanation.

Step-by-step explanation:

Given the vector

v = 6i + 2√3j

The Magnitude of a vector:

[tex]\mathrm{Computing\:the\:Euclidean\:Length\:of\:a\:vector}:\quad \left|\left(x_1\:,\:\:\ldots \:,\:\:x_n\right)\right|=\sqrt{\sum _{i=1}^n\left|x_i\right|^2}[/tex]

[tex]=\sqrt{6^2+\left(2\sqrt{3}\right)^2}[/tex]

[tex]=\sqrt{36+12}[/tex]

[tex]=\sqrt{48}[/tex]

[tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}[/tex]

[tex]=\sqrt{3}\sqrt{2^4}[/tex]

[tex]=4\sqrt{3}[/tex]

The Direction of a vector:

tan Ф = y/x

y=2√3

x = 6

tan Ф = y/x

          = 2√3 / 6

           = √3 / 3                  

[tex]\theta \:=tan\:^{-1}\left(\frac{\sqrt{3}}{3}\right)[/tex]

[tex]\:\theta \:=\frac{\pi \:}{6}=30^{\circ \:}[/tex]