Respuesta :

Answer:

[tex]Leg\ 1 = 8[/tex]

[tex]Leg\ 2 = 15[/tex]

Step-by-step explanation:

Given: See Attachment

Required

Determine the length of the legs

To do this, we apply Pythagoras theorem.

[tex]Hyp^2 = Adj^2 + Opp^2[/tex]

In this case:

[tex]17^2 = x^2 + (2x- 1)^2[/tex]

Open Bracket

[tex]17^2 = x^2 + 4x^2- 2x-2x + 1[/tex]

[tex]17^2 = 5x^2 - 4x + 1[/tex]

[tex]289= 5x^2 - 4x + 1[/tex]

Collect Like Terms

[tex]5x^2 - 4x + 1 - 289 = 0[/tex]

[tex]5x^2 - 4x - 288 = 0[/tex]

Solving using quadratic formula:

[tex]x = \frac{-b\±\sqrt{b^2 - 4ac}}{2a}[/tex]

So:

[tex]x = 8[/tex] or [tex]x = -7.2[/tex]

Since, x can't be negative, then:

[tex]x = 8[/tex]

One of the leg is:

[tex]Leg\ 1 = x[/tex]

[tex]Leg\ 1 = 8[/tex]

[tex]Leg\ 2 = 2x - 1[/tex]

[tex]Leg\ 2 = 2*8 - 1[/tex]

[tex]Leg\ 2 = 16 - 1[/tex]

[tex]Leg\ 2 = 15[/tex]