Respuesta :

Answer:

exact form 3/2 decimal  form 1.5 mixed number form 1 1/2

Step-by-step explanation:

Answer:

[tex] \huge{ \bold{ \boxed{ \tt{x = - \frac{3}{2} }}}}[/tex]

☯[tex] \underline{ \underline{ \sf{Question}}} : [/tex]

  • 3 ( x - 2 ) + 4 = x - 5

☯ [tex] \underline{ \underline{ \sf{To \: find}}} : [/tex]

  • the value of x

[tex] \text{Given \: Equation : \: 3(x - 2) + 4 = x - 5}[/tex]

You must distribute first ! In this equation , you have the distributive property on left hand side of the equation. You must first get rid of the parentheses.

⇢ [tex] \text{3 × \: x - 3× 2 + 4 = x - 5} [/tex]

⇢ [tex] \text{3x - 6 + 4 = x - 5}[/tex]

On the left hand side , you have two numbers : - 6 and 4. Remember that ' The negative and positive numbers are subtracted but posses the sign of the bigger number. '

⇢[tex] \sf{3x - 2 = x - 5}[/tex]

Move x to left hand side and change it's sign.

Similarly , move 2 to right hand side and change it's sign.

⇢[tex] \sf{3x - x = - 5 + 2}[/tex]

On the left hand side , you have like terms. Combine the like terms : 3x - x = 2x

⇢[tex] \sf{2x = - 5 + 2}[/tex]

On the right hand side , - 5 + 2 = -3

⇢[tex] \sf{2x = - 3}[/tex]

Divide both sides by 2

⇢[tex] \sf{ \frac{2x}{2} = - \frac{3}{2} }[/tex]

⇢[tex] \boxed{\sf{x = - \frac{3}{2} }}[/tex]

-----------------------------------------------------------------

✏ CHECK :

[tex] \text{3(x - 2) + 4 = x - 5}[/tex]

Substitute [tex] \sf{ - \frac{3}{2}} [/tex] for x into the original equation. And simplify !

⇾ [tex] \sf{3( - \frac{3}{2} - 2) + 4 = - \frac{3}{2} - 5}[/tex]

⇾[tex] \sf{3( \frac{ - 3 - 2 \times 2}{2} ) + 4 = \frac{ - 3 - 5 \times 2}{2}} [/tex]

⇾[tex] \sf{3( \frac{ - 3 - 4}{2} ) + 4 = \frac{ - 3 - 10}{2}} [/tex]

⇾[tex] \sf{3( \frac{ - 7}{2} ) + 4 = \frac{ - 13}{2}} [/tex]

⇾[tex] \sf{ \frac{ - 21}{2} + 4 = \frac{ - 13}{2}} [/tex]

⇾[tex] \sf{ \frac{ - 21 + 4 \times 2}{2} = \frac{ - 13}{2}} [/tex]

⇾[tex] \sf{ \frac{ - 21 + 8}{2} = \frac{ - 13}{2}} [/tex]

⇾[tex] \sf{ \frac{ - 13}{2} = \frac{ - 13}{2}} [/tex]

Since both sides are equal , x = [tex] \boxed{ - \sf{ \frac{ 3}{2} }}[/tex] is the correct answer.

And we're done !!

Hope I helped!

Have a wonderful day ! ツ

~TheAnimeGirl ♡