The logarithmic expression ln(√e/y^3) can be rewritten as

Answer:
[tex]\dfrac{1 - 6 \ln y}{2}[/tex]
Step-by-step explanation:
[tex] \ln \dfrac{\sqrt{e}}{y^3} = [/tex]
[tex] = \ln \dfrac{e^\frac{1}{2}}{y^3} [/tex]
[tex] = \ln e^\frac{1}{2} - \ln y^3 [/tex]
[tex]= \dfrac{1}{2} \ln e - 3 \ln y[/tex]
[tex]= \dfrac{1}{2} - 3 \ln y[/tex]
[tex]= \dfrac{1 - 6 \ln y}{2}[/tex]
The given logarithmic expression can be written as [tex]\frac{1-6ln\ y}{2}[/tex]
Given that,
Based on the above information, the calculation is as follows:
[tex]= ln \frac{\sqrt{e} }{y^3}\\\\= ln \frac{e^{1/2}}{y^3} \\\\= ln \e^{1/2} - lny3\\\\= \frac{1}{2}ln e - 3 ln y\\\\= \frac{1}{2} - 3 ln \ y \\\\= \frac{1- 6ln \y}{2}[/tex]
Therefore we can conclude that the given logarithmic expression can be written as [tex]\frac{1-6ln\ y}{2}[/tex]
Learn more: brainly.com/question/24169758