Respuesta :

Answer:

[tex]\dfrac{1 - 6 \ln y}{2}[/tex]

Step-by-step explanation:

[tex] \ln \dfrac{\sqrt{e}}{y^3} = [/tex]

[tex] = \ln \dfrac{e^\frac{1}{2}}{y^3} [/tex]

[tex] = \ln e^\frac{1}{2} - \ln y^3 [/tex]

[tex]= \dfrac{1}{2} \ln e - 3 \ln y[/tex]

[tex]= \dfrac{1}{2} - 3 \ln y[/tex]

[tex]= \dfrac{1 - 6 \ln y}{2}[/tex]

The given logarithmic expression can be written as [tex]\frac{1-6ln\ y}{2}[/tex]

Given that,

  • The given logarithmic expression is [tex]ln \frac{\sqrt{e} }{y^3}[/tex].
  • We need to rewrite the above logarithmic expression.

Based on the above information, the calculation is as follows:

[tex]= ln \frac{\sqrt{e} }{y^3}\\\\= ln \frac{e^{1/2}}{y^3} \\\\= ln \e^{1/2} - lny3\\\\= \frac{1}{2}ln e - 3 ln y\\\\= \frac{1}{2} - 3 ln \ y \\\\= \frac{1- 6ln \y}{2}[/tex]

Therefore we can conclude that the given logarithmic expression can be written as [tex]\frac{1-6ln\ y}{2}[/tex]

Learn more: brainly.com/question/24169758