On a coordinate plane, triangles P Q R and S T U are shown. Triangle P Q R has points (4, 4), (negative 2, 0), (negative 2, 4). Triangle S T U has points (2, negative 4), (negative 1, negative 2), (negative 1, negative 4). Complete the statements to verify that the triangles are similar. StartFraction Q R Over T U EndFraction = StartFraction P R Over S U EndFraction = StartFraction P Q Over S T EndFraction = StartFraction StartRoot 52 EndRoot Over StartRoot 13 EndRoot EndFraction = Therefore, △PQR ~ △STU by the theorem.

Respuesta :

Answer:

The answer is below

Step-by-step explanation:

Two triangles are said to be similar if their corresponding angles are equal and the corresponding sides are in proportion.

The distance between two points on the coordinate plane is given as:

[tex]Distance=\sqrt{(x_2-x_1}^2+(y_2-y_1)^2 \\\\Therefore\ in\ triangle\ PQR:\\\\|QR|=\sqrt{(-2-(-2))^2+(4-0)^2}=4\\\\|PQ|=\sqrt{(-2-4)^2+(0-4)^2}=\sqrt{52}=2\sqrt{13} \\\\|PR|=\sqrt{(-2-4)^2+(4-4)^2}=6[/tex]

In triangle STU:

[tex]|ST|=\sqrt{(-1-2)^2+(-2-(-4))^2}=\sqrt{13}\\\\|SU|=\sqrt{(-1-2)^2+(-4-(-4))^2} =3\\\\|TU|=\sqrt{(-1-(-1))^2+(-4-(-2))^2}=2[/tex]

|QR| / |TU| = 4/2 = 2

|PR| / |SU| = 6/3 = 2

|PQ| / |ST| = 2√13 / √13 = 2

Hence:

|QR| / |TU| = |PR| / |SU| = |PQ| / |ST|

Therefore, △PQR and △STU are similar triangles since the ratio of their sides are in the same proportion.

Similar triangles may or may not be congruent

Triangles PQR and STU are similar by SSS theorem.

The vertices of triangle PQR are given as:

[tex]P= (4, 4)[/tex]

[tex]Q= (-2, 0)[/tex]

[tex]R = (-2, 4)[/tex]

The vertices of triangle STU are given as:

[tex]S = (2, -4)[/tex]

[tex]T = (-1, -2)[/tex]

[tex]U =(-1, -4)[/tex]

Start by calculating the side lengths of the two triangles, using the following distance formula

[tex]d = \sqrt{(x_2 -x_1)^2 + (y_2 -y_1)^2}[/tex]

For triangle PQR, we have:

[tex]PQ = \sqrt{(4 --2)^2 + (4 -0)^2} = \sqrt{52}[/tex]

[tex]PR = \sqrt{(4 --2)^2 + (4 -4)^2} = 6[/tex]

[tex]QR = \sqrt{(-2 --2)^2 + (0 -4)^2} = 4[/tex]

For triangle STU, we have:

[tex]ST= \sqrt{(2 --1)^2 + (-4 --2)^2} = \sqrt{13}[/tex]

[tex]SU= \sqrt{(2 --1)^2 + (-4 --4)^2} = 3[/tex]

[tex]TU= \sqrt{(-1 --1)^2 + (-2 --4)^2} = 2[/tex]

Check if the side lengths of both triangles are similar, by dividing corresponding sides

[tex]k = \frac{PQ}{ST} = \frac{\sqrt{52}}{\sqrt{13}} = 2[/tex]

[tex]k = \frac{PR}{SU} = \frac{6}{3} = 2[/tex]

[tex]k = \frac{QR}{TU} = \frac{4}{2} = 2[/tex]

Because the scale factors of the side lengths are the same, then both triangles are similar by SSS theorem.

Read more about similar triangles at:

https://brainly.com/question/8691470