The sound level at a distance of 1.48 m from a source is 120 dB. At what distance will the sound level be 70.7 dB?

Respuesta :

Answer:

The second distance of the sound from the source is 431.78 m..

Explanation:

Given;

first distance of the sound from the source, r₁ = 1.48 m

first sound intensity level, I₁ = 120 dB

second sound intensity level, I₂ = 70.7 dB

second distance of the sound from the source, r₂ = ?

The intensity of sound in W/m² is given as;

[tex]dB = 10 Log[\frac{I}{I_o} ]\\\\For \ 120 dB\\\\120 = 10Log[\frac{I}{1*10^{-12}}]\\\\12 = Log[\frac{I}{1*10^{-12}}]\\\\10^{12} = \frac{I}{1*10^{-12}}\\\\I = 10^{12} \ \times \ 10^{-12}\\\\I = 1 \ W/m^2[/tex]

[tex]For \ 70.7 dB\\\\70.7 = 10Log[\frac{I}{1*10^{-12}}]\\\\7.07 = Log[\frac{I}{1*10^{-12}}]\\\\10^{7.07} = \frac{I}{1*10^{-12}}\\\\I = 10^{7.07} \ \times \ 10^{-12}\\\\I = 1 \times \ 10^{-4.93} \ W/m^2[/tex]

The second distance, r₂, can be determined from sound intensity formula given as;

[tex]I = \frac{P}{A}\\\\I = \frac{P}{\pi r^2}\\\\Ir^2 = \frac{P}{\pi }\\\\I_1r_1^2 = I_2r_2^2\\\\r_2^2 = \frac{I_1r_1^2}{I_2} \\\\r_2 = \sqrt{\frac{I_1r_1^2}{I_2}} \\\\r_2 = \sqrt{\frac{(1)(1.48^2)}{(1 \times \ 10^{-4.93})}}\\\\r_2 = 431.78 \ m[/tex]

Therefore, the second distance of the sound from the source is 431.78 m.