In a sample of 41 temperature readings taken from the freezer of a restaurant, the mean is 29.7 degrees and the population standard deviation is 2.7 degrees. What would be the 80% confidence interval for the temperatures in the freezer?

Respuesta :

Answer: [tex]=(29.1596\text{ degrees},\ 30.2404\text{ degrees})[/tex]

Step-by-step explanation:

Given: Sample size: n = 41

Sample mean [tex]\overline{x}= 29.7[/tex] degrees

Population standard deviation [tex]\sigma=2.7[/tex] degrees

Confidence level (c) =  80% =0.80

Significance level (a) = 1- c = 1-0.80 = 0.20

z-score for 80% confidence level : z = 1.2816   [from z-table]

Confidence level for population mean :-

[tex]\overline{x}\pm z\dfrac{\sigma}{\sqrt{n}}[/tex]

[tex]=29.7\pm ( 1.2816)\dfrac{2.7}{\sqrt{41}}[/tex]

[tex]=29.7\pm ( 1.2816)\dfrac{2.7}{6.403124}[/tex]

[tex]=29.7\pm ( 1.2816)(0.42167)[/tex]

[tex]=29.7\pm 0.5404[/tex]

[tex]=(29.7-0.5404,\ 29.7+0.5404)[/tex]

[tex]=(29.1596,\ 30.2404)[/tex]

Hence, 80% confidence interval for the temperatures in the freezer [tex]=(29.1596\text{ degrees},\ 30.2404\text{ degrees})[/tex]