Find the mean, the median, and all modes for the data in the given frequency distribution. (Round your answers to one decimal place. If there is more than one mode, enter your answer as a comma-separated list. If an answer does not exist, enter DNE.)

Points Scored by Lynn Points scored in a basketball game Frequency
2 10
3 9
9 10
11 7
12 3
15 4
16 3

Respuesta :

Answer: Mean = 7.8

              Median = 9

             Mode = 2,9

Step-by-step explanation: Mean is the average value of a data set. Mean from a frequency table is calculated as:

[tex]E(X)=\frac{2(10)+3(9)+9(10)+11(7)+12(3)+15(4)+16(3)}{10+9+10+7+3+4+3}[/tex]

E(X) = 7.8

Mean for the given frequency distribtuion is 7.8.

Median is the central term of a set of numbers. Median in a frequency table is calculated as:

1) Find total number, n:

n = 10 + 9 + 10 + 7 + 3 + 4 + 3 = 46

2) Find position, using: [tex]\frac{n+1}{2}[/tex]

[tex]\frac{n+1}{2}=\frac{47}{2}[/tex] = 23.5

Median is in the 23.5th position.

3) Find the position by adding frequencies: for this frequency distribution, 23.5th position is 9

Median for this frequency distribution is 9.

Mode  is the number or value associated with the highest frequency.

In this frequency distribution, 2 and 9 points happen 10 times. So, mode is 2 and 9.

Mode for this distribution is 2 and 9.

Following are the calculation of mean, median, and modes:

Given value:

[tex]\bold{x \ \ \ \ \ \ f} \\\\ 2\ \ \ \ \ 10 \\3\ \ \ \ \ 9\\9 \ \ \ \ \ 10\\11\ \ \ \ \ 7\\12 \ \ \ \ \ 3\\15 \ \ \ \ \ 4\\16 \ \ \ \ \ 3\\[/tex]

To find:

mean, median, and modes=?

Solution:

[tex]\bold{x \ \ \ \ \ \ f \ \ \ \ \ \ cf \ \ \ \ \ \ fx} \\\\2\ \ \ \ \ 10 \ \ \ \ \ 10 \ \ \ \ \ 20 \\3\ \ \ \ \ 9 \ \ \ \ \ 19 \ \ \ \ \ 27 \\9 \ \ \ \ \ 10\ \ \ \ \ 29 \ \ \ \ \ 90 \\11\ \ \ \ \ 7\ \ \ \ \ 36 \ \ \ \ 77 \\12 \ \ \ \ \ 3\ \ \ \ \ 39 \ \ \ \ 36\\15 \ \ \ \ \ 4\ \ \ \ \ 43 \ \ \ \ 60\\16 \ \ \ \ \ 3\ \ \ \ \ 46 \ \ \ \ 48 \\[/tex]

[tex]\Sigma f = 46 \ \ \ \ \ \ \ \ \ \ \Sigma fx= 358[/tex]

Calculating the Mean:

[tex]Mean=\frac{\Sigma fx}{\Sigma f}[/tex]

          [tex]=\frac{358}{46}\\\\= 7.78[/tex]

Calculating the Median:

[tex]n= \Sigma f= 46[/tex]

[tex]Median=\frac{ (\frac{n}{2})^{th} +(\frac{n}{2} +1)^{th}}{ 2}[/tex]

             [tex]=\frac{ (\frac{46}{2})^{th} +(\frac{46}{2} +1)^{th}}{ 2}\\\\=\frac{ (23)^{th} +(24)^{th}}{ 2}\\\\=\frac{ 3 +3}{ 2}\\\\=\frac{ 6}{ 2}\\\\=3[/tex]

Calculating the Mode:

Mode is the value of 'x' with the highest frequency is 10 for x= 2 and x=9 therefore, the mode is "2,9".

Learn more:

brainly.com/question/14015029