In the coordinate plane, the point A, 4− 2 is translated to the point A′, 1− 5. Under the same translation, the points B, 7− 4 and C, 2− 5 are translated to B′ and C′, respectively. What are the coordinates of B′ and C′?

Respuesta :

Answer:

The coordinates of B' and C' are [tex]B'(x,y) = (4, -7)[/tex] and [tex]C'(x,y) = (-1, -8)[/tex], respectively.

Step-by-step explanation:

From the Linear Algebra, we define the translation of a given point as:

[tex]O'(x,y) = O(x,y) + T(x,y)[/tex] (1)

Where:

[tex]O(x,y)[/tex] - Original point, dimensionless.

[tex]T(x,y)[/tex] - Translation vector, dimensionless.

[tex]O'(x,y)[/tex] - Translated point, dimensionless.

If we know that [tex]A'(x,y) = (1, -5)[/tex] and [tex]A(x,y) = (4,-2)[/tex], then the translation vector is:

[tex]T(x,y) = A'(x,y)-A(x,y)[/tex] (2)

[tex]T(x,y) = (1,-5)-(4,-2)[/tex]

[tex]T(x,y) = (-3,-3)[/tex]

If we know that [tex]B(x,y) = (7,-4)[/tex], [tex]C(x,y) = (2,-5)[/tex] and [tex]T(x,y) = (-3,-3)[/tex], then the translated points are, respectively:

[tex]B'(x,y) = B(x,y)+T(x,y)[/tex] (3)

[tex]B'(x,y) = (7,-4) +(-3,-3)[/tex]

[tex]B'(x,y) = (4, -7)[/tex]

[tex]C'(x,y) = C(x,y) +T(x,y)[/tex]

[tex]C'(x,y) = (2,-5) + (-3,-3)[/tex]

[tex]C'(x,y) = (-1, -8)[/tex]

The coordinates of B' and C' are [tex]B'(x,y) = (4, -7)[/tex] and [tex]C'(x,y) = (-1, -8)[/tex], respectively.