Answer:
The coordinates of B' and C' are [tex]B'(x,y) = (4, -7)[/tex] and [tex]C'(x,y) = (-1, -8)[/tex], respectively.
Step-by-step explanation:
From the Linear Algebra, we define the translation of a given point as:
[tex]O'(x,y) = O(x,y) + T(x,y)[/tex] (1)
Where:
[tex]O(x,y)[/tex] - Original point, dimensionless.
[tex]T(x,y)[/tex] - Translation vector, dimensionless.
[tex]O'(x,y)[/tex] - Translated point, dimensionless.
If we know that [tex]A'(x,y) = (1, -5)[/tex] and [tex]A(x,y) = (4,-2)[/tex], then the translation vector is:
[tex]T(x,y) = A'(x,y)-A(x,y)[/tex] (2)
[tex]T(x,y) = (1,-5)-(4,-2)[/tex]
[tex]T(x,y) = (-3,-3)[/tex]
If we know that [tex]B(x,y) = (7,-4)[/tex], [tex]C(x,y) = (2,-5)[/tex] and [tex]T(x,y) = (-3,-3)[/tex], then the translated points are, respectively:
[tex]B'(x,y) = B(x,y)+T(x,y)[/tex] (3)
[tex]B'(x,y) = (7,-4) +(-3,-3)[/tex]
[tex]B'(x,y) = (4, -7)[/tex]
[tex]C'(x,y) = C(x,y) +T(x,y)[/tex]
[tex]C'(x,y) = (2,-5) + (-3,-3)[/tex]
[tex]C'(x,y) = (-1, -8)[/tex]
The coordinates of B' and C' are [tex]B'(x,y) = (4, -7)[/tex] and [tex]C'(x,y) = (-1, -8)[/tex], respectively.