Answer:
The answer is "0.5555 m"
Explanation:
Where the reference leaves the list and the viewer is at rest:
[tex]\lambda'=\frac{v-v_s}{v} \times \lambda\\\\[/tex]
[tex]=\frac{343 \frac{m}{s} - (-62.4 \frac{m}{s})}{343 \frac{m}{s}} \times 0.47 \ m\\\\ =\frac{343 \frac{m}{s} + 62.4 \frac{m}{s}}{343 \frac{m}{s}} \times 0.47 \ m\\\\ =\frac{405.4 \frac{m}{s}}{343 \frac{m}{s}} \times 0.47 \ m\\\\ =\frac{405.4 \frac{m}{s}}{343 \frac{m}{s}} \times 0.47 \ m[/tex]
[tex]=0.5555 \ m[/tex]