Respuesta :

Answer:

m<1 = 121°

m<2 = 59°

Step-by-step explanation:

If m<1 is the supplement of m<2 and the measure of each angle is given:

m<1=2x+65

m<2=3x-25

Find m<1:

When two angles are supplement of each other, there sum is equal to 180°

i.e m<1 + m<2 = 180°

Putting values and finding angle 1

[tex]2x+65+3x-25=180\\5x+40=180\\5x=180-40\\5x=140\\x=\frac{140}{5}\\x=28[/tex]

So, we get x=28

Now finding m<1 by putting x=28

[tex]m<1=2x+65\\m<1=2(28)+65\\m<1=56+65\\m<1=121^{\circ}\\[/tex]

Now, finding m<2 by putting x=28

[tex]m<2=3x-25\\m<2=3(28)-25\\m<2=84-25\\m<2=59^{\circ}[/tex]

So, we get:

m<1 = 121°

m<2 = 59°