Answer:
m<1 = 121°
m<2 = 59°
Step-by-step explanation:
If m<1 is the supplement of m<2 and the measure of each angle is given:
m<1=2x+65
m<2=3x-25
Find m<1:
When two angles are supplement of each other, there sum is equal to 180°
i.e m<1 + m<2 = 180°
Putting values and finding angle 1
[tex]2x+65+3x-25=180\\5x+40=180\\5x=180-40\\5x=140\\x=\frac{140}{5}\\x=28[/tex]
So, we get x=28
Now finding m<1 by putting x=28
[tex]m<1=2x+65\\m<1=2(28)+65\\m<1=56+65\\m<1=121^{\circ}\\[/tex]
Now, finding m<2 by putting x=28
[tex]m<2=3x-25\\m<2=3(28)-25\\m<2=84-25\\m<2=59^{\circ}[/tex]
So, we get:
m<1 = 121°
m<2 = 59°