Which of the following statements have the same result? Explain each step in solving each one.
I. f(2) when f(x) = 3x + 4
II. f−1(4) when f(x) =3x-4/5
III. 3y − 6 = y + 10
You must solve each and show and explain each step. Then explain equivalency. Part 2 you must find the inverse equation.

Respuesta :

Answer:

None of the following statements have the same result.

Step-by-step explanation:

1) f(2) when f(x) = 3x + 4

We just have to put x=2

[tex]f(x)=3x+4\\f(2)=3(2)+4\\f(2)=6+4\\f(2)=10[/tex]

So, f(2) when f(x) = 3x + 4 is x=10

2) f⁻¹ (4)  when f(x) =3x-4/5

We need to find f⁻¹(x) first.

Put [tex]y=3x-\frac{4}{5}[/tex]

Now solve for x

Add 4/5 on both sides

[tex]y+\frac{4}{5}=3x-\frac{4}{5}\\y+\frac{4}{5}=3x\\x=\frac{1}{3}y+\frac{4}{5*3}\\x=\frac{1}{3}y+\frac{4}{15}\\x=\frac{5y+4}{15}[/tex]

Now put  f⁻¹(x)  instead of x and replace y with x

[tex]f^{-1}(x)=\frac{5x+4}{15}[/tex]

Now finding f⁻¹(4)

[tex]f^{-1}(x)=\frac{5x+4}{15} \\f^{-1}(4)=\frac{5(4)+4}{15} \\f^{-1}(4)=\frac{20+4}{15} \\f^{-1}(4)=\frac{24}{15}[/tex]

f⁻¹ (4)  when f(x) =3x-4/5 is 24/15

3) [tex]3y - 6 = y + 10\\[/tex]

Solving:

[tex]3y - 6 = y + 10\\3y-y=10+6\\2y=16\\y=16/2\\y=8[/tex]

Solving 3y − 6 = y + 10, we get y=8

None of the following statements have the same result.