Respuesta :

Answer:

The solution to the system of equations is:

[tex]x=4,\:y=-3[/tex]

Step-by-step explanation:

Given the system of equations

[tex]5x + 4y =8[/tex]

[tex]2x- 3y = 17[/tex]

solving the system of equations

[tex]\begin{bmatrix}5x+4y=8\\ 2x-3y=17\end{bmatrix}[/tex]

[tex]\mathrm{Multiply\:}5x+4y=8\mathrm{\:by\:}2\:\mathrm{:}\:\quad \:10x+8y=16[/tex]

[tex]\mathrm{Multiply\:}2x-3y=17\mathrm{\:by\:}5\:\mathrm{:}\:\quad \:10x-15y=85[/tex]

[tex]\begin{bmatrix}10x+8y=16\\ 10x-15y=85\end{bmatrix}[/tex]

[tex]10x-15y=85[/tex]

[tex]-[/tex]

[tex]\underline{10x+8y=16}[/tex]

[tex]-23y=69[/tex]

[tex]\begin{bmatrix}10x+8y=16\\ -23y=69\end{bmatrix}[/tex]

solve for y

[tex]-23y=69[/tex]

Divide both sides by -23

[tex]\frac{-23y}{-23}=\frac{69}{-23}[/tex]

[tex]y=-3[/tex]

[tex]\mathrm{For\:}10x+8y=16\mathrm{\:plug\:in\:}y=-3[/tex]

[tex]10x+8\left(-3\right)=16[/tex]

[tex]10x-24=16[/tex]

[tex]10x=40[/tex]

Divide both sides by 10

[tex]\frac{10x}{10}=\frac{40}{10}[/tex]

[tex]x=4[/tex]

Thus, the solution to the system of equations is:

[tex]x=4,\:y=-3[/tex]