Respuesta :

Answer:

[tex]y=\frac{1}{4} x+8[/tex]

Step-by-step explanation:

Use point-slope form:

[tex]y-y_{1}=m(x-x_{1})[/tex]

Where:

  • m is the slope
  • x1 and y1 are the given points (-8,6)

Insert the values:

[tex]y-6=\frac{1}{4} (x-(-8))\\\\y-6=\frac{1}{4} (x+8)[/tex]

Convert to slope-intercept form by solving for y (isolate the y variable).

Simplify the multiplication. Use the rule [tex]\frac{a}{b}*c=\frac{ac}{b}[/tex] :

[tex]y-6=\frac{x+8}{4}\\\\y-6=\frac{x}{4} +\frac{8}{4} \\\\y-6=\frac{1x}{4} +2\\\\y-6=\frac{1}{4} x+2[/tex]

Add 6 to both sides:

[tex]y-6+6=\frac{1}{4} x+2+6\\\\y=\frac{1}{4} x+8[/tex]

:Done