Answer:
[tex]y=\frac{1}{4} x+8[/tex]
Step-by-step explanation:
Use point-slope form:
[tex]y-y_{1}=m(x-x_{1})[/tex]
Where:
Insert the values:
[tex]y-6=\frac{1}{4} (x-(-8))\\\\y-6=\frac{1}{4} (x+8)[/tex]
Convert to slope-intercept form by solving for y (isolate the y variable).
Simplify the multiplication. Use the rule [tex]\frac{a}{b}*c=\frac{ac}{b}[/tex] :
[tex]y-6=\frac{x+8}{4}\\\\y-6=\frac{x}{4} +\frac{8}{4} \\\\y-6=\frac{1x}{4} +2\\\\y-6=\frac{1}{4} x+2[/tex]
Add 6 to both sides:
[tex]y-6+6=\frac{1}{4} x+2+6\\\\y=\frac{1}{4} x+8[/tex]
:Done