Respuesta :

Given:

Consider the equation is

[tex]\dfrac{h^{16}}{h^x}=\dfrac{1}{h^{24}}[/tex]

To find:

The value of x.

Solution:

We have,

[tex]\dfrac{h^{-16}}{h^x}=\dfrac{1}{h^{24}}[/tex]

Using properties of exponents, we get

[tex]h^{-16-x}=h^{-24}[/tex]       [tex][\because \dfrac{a^m}{a^n}=a^{m-n},a^{-n}=\dfrac{1}{a^n}][/tex]

On comparing both sides, we get

[tex]-16-x=-24[/tex]

Add 16 on both sides.

[tex]-x=-24+16[/tex]

[tex]-x=-8[/tex]

Multiply both sides by -1.

[tex]x=8[/tex]

Therefore, the value of x is 8.