In the triarngle below, what is the length of the side opposite the 60 angle?
\243
OA. 3
O B. 6
O D. 243

Answer:
A. 3
Step-by-step explanation:
Let the length of the opposite side be x.
Hypotenuse = 2√3
Using the trigonometric ratios formula, we have:
[tex] sin(60) = \frac{x}{2\sqrt{3}} [/tex]
[tex] \frac{\sqrt{3}}{2} = \frac{x}{2\sqrt{3}} [/tex]
Multiply both sides by 2√3
[tex] \frac{\sqrt{3}}{2} \times 2\sqrt{3} = x [/tex]
[tex] \frac{\sqrt{3} \times 2\sqrt{3}}{2} = x [/tex]
[tex] \sqrt{3} \times \sqrt{3} = x [/tex]
3 = x
x = 3