Instructions: Find the missing side lengths. Leave your answers as radicals in simplest form.

Answer:
x = 10[tex]\sqrt{3}[/tex], y = 10
Step-by-step explanation:
Using the sine/ cosine ratios in the right triangle and the exact values
sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] , cos60° = [tex]\frac{1}{2}[/tex] , then
sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{x}{20}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )
2x = 20[tex]\sqrt{3}[/tex] ( divide both sides by 2 )
x = 10[tex]\sqrt{3}[/tex]
and
cos60° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{y}{20}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )
2y = 20 ( divide both sides by 2 )
y = 10