A toroid filled with a magnetic substance carries a steady current of 2.91 A. The coil contains 802 turns, has an average radius of 4.33 cm. The magnetic field through the toroid is 0.193137 T. Assume the flux density is constant. What is the magnetic field strength H within the core in the absence of the magnetic substance?

Respuesta :

Answer:

The magnetic field strength is [tex]H = 8577.2 \ A/m[/tex]    

Explanation:

From the question we are told that

         The current is  [tex]A = 2.91 \ A[/tex]

         The number of turns is [tex]N = 802 \ turns[/tex]

          The radius is  [tex]R = 4.33 \ cm = 0.0433 \ m[/tex]

          The magnetic filed is  [tex]B = 0.193137 \ T[/tex]

           

Generally the magnetic field strength is mathematically represented as

               [tex]H = \frac{ NI}{ 2 \pi * r }[/tex]

=>            [tex]H = \frac{ 802 * 2.91 }{ 2 * 3.142 * 0.0433 }[/tex]

=>            [tex]H = 8577.2 \ A/m[/tex]