Answer:
[tex]{Minimum}\space\left(-2,\:-16\right)[/tex]minimum (-2, -16)
Step-by-step Explanation:
[tex]y=\left(x-2\right)\left(x+6\right):\\[/tex]
[tex]a=1,\:m=2,\:n=-6[/tex]
[tex]x_v=\frac{m+n}{2}[/tex]
[tex]x_v=\frac{2+\left(-6\right)}{2}[/tex]
Plug in xv = -2 to find the value
[tex]y_v=-16[/tex]
[tex]\left(-2,\:-16\right)[/tex][tex]{Minimum}\space\left(-2,\:-16\right)[/tex]
[tex]{Minimum}\space\left(-2,\:-16\right)[/tex]minimum (-2, -16)
[tex]\mathrm{Minimum}\space\left(-2,\:-16\right)[/tex]