Respuesta :

Solution :

Assume that the diameter of the watch glass is 9.5 cm.

There are 10 drops of hexagon in 1 mL.

V = volume of hexagon in per drop = [tex]$\frac{1}{10}$[/tex]  mL per drop

V = 0.1 mL per drop

N = number of drops to form phospholipid layer

N = 39 (assumed)

[tex]$\bar V$[/tex] = volume of hexagon required to form phospholipid layer

[tex]$\bar V$[/tex] = V x N

[tex]$\bar V$[/tex] = 0.1 x 39  

   = 3.9 mL

Since 1 mL = 1 [tex]$cm^3$[/tex]

∴  [tex]$\bar V$[/tex]  = 3.9 [tex]$cm^3$[/tex]

d = diameter of the watch glass = 9.5 cm

A = area of one molecule

[tex]$A=\frac{\bar V }{\pi d}$[/tex]

[tex]$A=\frac{3.9 }{3.14 \times 9.5}$[/tex]

[tex]$A=0.1307 \ cm^2$[/tex]