What is the slope-intercept form of the function described by this table? X 1 2 3 4 y 8 13 18 23 Enter your answer by filling in the boxes. y=x X +​

Respuesta :

Answer:

The slope-intercept form of the function is:

[tex]y=5x+3[/tex]

Step-by-step explanation:

Given the table

x                      y

1                      8

2                     13

3                     18

4                     23

Let us take two points (1, 8) and (2, 13) to find the slope

  • (1, 8)
  • (2, 13)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(1,\:8\right),\:\left(x_2,\:y_2\right)=\left(2,\:13\right)[/tex]

[tex]m=\frac{13-8}{2-1}[/tex]

[tex]m=5[/tex]

We know that the slope-intercept form of the line equation is

[tex]y=mx+b[/tex]

where m is the slope and b is the y-intercept.

substituting the values m=5 and the point (1, 8) to determine the y-intercept i.e. 'b'.

[tex]y=mx+b[/tex]

8 = 5(1) + b

b = 8-5

[tex]b = 3[/tex]

Now, substituting the values m=5 and b=3 in the slope-intercept form to

[tex]y=mx+b[/tex]

[tex]y=5x+3[/tex]

Thus, the slope-intercept form of the function is:

[tex]y=5x+3[/tex]

Answer:

y=5x+3

Step-by-step explanation: