Answer:
The expression to represent the length
Step-by-step explanation:
Given
We know that The formula for the area of the rectangle is:
Thus, the length of a rectangle
Length = Area ÷ Width
[tex]=\frac{x-\frac{16}{x}}{\frac{x}{4}+1}[/tex]
[tex]=\frac{x-\frac{16}{x}}{\frac{x+4}{4}}[/tex]
[tex]=\frac{\frac{x^2-16}{x}}{\frac{x+4}{4}}[/tex]
[tex]\mathrm{Divide\:fractions}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}[/tex]
[tex]=\frac{\left(x^2-16\right)\cdot \:4}{x\left(x+4\right)}[/tex]
[tex]=\frac{\left(x+4\right)\left(x-4\right)\cdot \:4}{x\left(x+4\right)}[/tex]
Cancel the common factor: (x+4)
[tex]=\frac{4\left(x-4\right)}{x}[/tex]
Thus, the expression to represent the length