Consider the two functions below. Which one of these functions is linear? What is its equation? Enter any answers to two decimal places.

Respuesta :

Answer:

[tex]y = 1.67x[/tex]

Step-by-step explanation:

Function A:

x  || 3  ||  6  ||  9  ||  12  ||  15

y  || 5  ||  10 ||  15 ||  20 || 25

See attachment for Function B

First, we need to determine the equation of function A using linear interpolation

As follows:

[tex]y = y_1 + (x - x_1)\frac{y_2 - y_1}{x_2 - x_1}[/tex]

Take any two corresponding values of x and y to be:

[tex](x_1,y_1) = (3,5)[/tex]

[tex](x_2,y_2) = (15,25)[/tex]

The equation becomes:

[tex]y = y_1 + (x - x_1)\frac{y_2 - y_1}{x_2 - x_1}[/tex]

[tex]y = 5 + (x - 3)\frac{25 - 5}{15 - 3}[/tex]

[tex]y = 5 + (x - 3)\frac{20}{12}[/tex]

[tex]y = 5 + (x - 3)\frac{5}{3}[/tex]

Open bracket

[tex]y = 5 + \frac{5x}{3} - \frac{5*3}{3}[/tex]

[tex]y = 5 + \frac{5x}{3} - 5[/tex]

Collect Like Terms

[tex]y = \frac{5x}{3} - 5 + 5[/tex]

[tex]y = \frac{5x}{3}[/tex]

[tex]y = 1.67x[/tex]

This function is linear and there is no need to check for function B

Ver imagen MrRoyal