Respuesta :

Answer:

[tex]\sin L = 0.60[/tex]

[tex]tan\ N = 1.33[/tex]

[tex]\cos L = 0.80[/tex]

[tex]\sin N = 0.80[/tex]

Step-by-step explanation:

Given

See attachment

From the attachment, we have:

[tex]MN = 6[/tex]

[tex]LN = 10[/tex]

First, we need to calculate length LM,

Using Pythagoras theorem:

[tex]LN^2 = MN^2 + LM^2[/tex]

[tex]10^2 = 6^2 + LM^2[/tex]

[tex]100 = 36 + LM^2[/tex]

Collect Like Terms

[tex]LM^2 = 100 - 36[/tex]

[tex]LM^2 = 64[/tex]

[tex]LM = 8[/tex]

Solving (a): [tex]\sin L[/tex]

[tex]\sin L = \frac{Opposite}{Hypotenuse}[/tex]

[tex]\sin L = \frac{MN}{LN}[/tex]

Substitute values for MN and LN

[tex]\sin L = \frac{6}{10}[/tex]

[tex]\sin L = 0.60[/tex]

Solving (b): [tex]tan\ N[/tex]

[tex]tan\ N = \frac{Opposite}{Adjacent}[/tex]

[tex]tan\ N = \frac{LM}{MN}[/tex]

Substitute values for LM and MN

[tex]tan\ N = \frac{8}{6}[/tex]

[tex]tan\ N = 1.33[/tex]

Solving (c): [tex]\cos L[/tex]

[tex]\cos L = \frac{Adjacent}{Hypotenuse}[/tex]

[tex]\cos L = \frac{LM}{LN}[/tex]

Substitute values for LN and LM

[tex]\cos L = \frac{8}{10}[/tex]

[tex]\cos L = 0.80[/tex]

Solving (d): [tex]\sin N[/tex]

[tex]\sin N = \frac{Opposite}{Hypotenuse}[/tex]

[tex]\sin N = \frac{LM}{LN}[/tex]

Substitute values for LM and LN

[tex]\sin N = \frac{8}{10}[/tex]

[tex]\sin N = 0.80[/tex]

Ver imagen MrRoyal