Find c, given that a + 18.2, B = 62, and C =48. Round answer to the nearest whole number. Do not use a decimal point or extra spaces in the answer or it will be marked incorrect

Respuesta :

Answer:

[tex]c=14[/tex]

Step-by-step explanation:

a = 18.2

[tex]\angle B=62^{\circ}[/tex]

[tex]\angle C=48^{\circ}[/tex]

[tex]\angle A=180-(62+48)=70^{\circ}[/tex]

From sine rule we have

[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]

[tex]\Rightarrow \dfrac{\sin A}{a}=\dfrac{\sin C}{c}[/tex]

[tex]\Rightarrow c=\dfrac{\sin C}{\sin A}a[/tex]

[tex]\Rightarrow c=\dfrac{\sin 48^{\circ}}{\sin 70^{\circ}}\times 18.2[/tex]

[tex]\Rightarrow c=14.4\approx 14[/tex]

[tex]\boldsymbol{\therefore c=14}[/tex].