Answer:
[tex]c=14[/tex]
Step-by-step explanation:
a = 18.2
[tex]\angle B=62^{\circ}[/tex]
[tex]\angle C=48^{\circ}[/tex]
[tex]\angle A=180-(62+48)=70^{\circ}[/tex]
From sine rule we have
[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]
[tex]\Rightarrow \dfrac{\sin A}{a}=\dfrac{\sin C}{c}[/tex]
[tex]\Rightarrow c=\dfrac{\sin C}{\sin A}a[/tex]
[tex]\Rightarrow c=\dfrac{\sin 48^{\circ}}{\sin 70^{\circ}}\times 18.2[/tex]
[tex]\Rightarrow c=14.4\approx 14[/tex]
[tex]\boldsymbol{\therefore c=14}[/tex].