contestada

Using Properties to Simplify Expressions
Instruction Active
Matching Equivalent Expressions
Match each expression on the left with an equivalent expression on the right
PLS HELP

Using Properties to Simplify Expressions Instruction Active Matching Equivalent Expressions Match each expression on the left with an equivalent expression on t class=

Respuesta :

Answer:

1) 2x-3 = x -3 + x

2) 2x - 6 = -6 + 2x

3) [tex]\frac{3}{5}-\frac{13}{5}=-6.9+4.9[/tex]

4) 3x+0 = 3x

5)  [tex]\frac{5}{3}-x+\frac{1}{3}=-\frac{3}{2}x+2+\frac{1}{2}x[/tex]

Step-by-step explanation:

We need to match each expression on the left with an equivalent expression on the right

The expressions are equivalent if the have the same results.

1) 2x - 3

Looking at the options the best match is:

x -3 + x

When solve we get:

2x-3

So, 2x-3 = x -3 + x

2) 2x - 6

Looking at the options the best match is:

-6 + 2x

Because according to commutative property: a+b = b+a

So, 2x - 6 = -6 + 2x

3) [tex]\frac{3}{5}-\frac{13}{5}[/tex]

First simplifying the given expression:

[tex]\frac{3}{5}-\frac{13}{5}\\=\frac{3-13}{5}\\=\frac{-10}{5}\\=-2[/tex]

Looking at the options, -6.9+4.9 = -2

So, [tex]\frac{3}{5}-\frac{13}{5}=-6.9+4.9[/tex]

4) 3x + 0

Looking at the options the best match is:

3x

Because, adding 0 in 3x will result in 3x

So, 3x+0 = 3x

5) [tex]\frac{5}{3}-x+\frac{1}{3}[/tex]

First simplifying:

[tex]\frac{5}{3}-x+\frac{1}{3}\\=\frac{5-3x+1}{3}\\=\frac{6-3x}{3}\\= \frac{3(2-x)}{3}\\=2-x[/tex]

Now, solving the option: [tex]-\frac{3}{2}x+2+\frac{1}{2}x[/tex]

[tex]=\frac{-3x+4+1x}{2}\\=\frac{-2x+4}{2}\\=\frac{2(-x+2)}{2}\\=-x+2\\or\\=2-x[/tex]

So, [tex]\frac{5}{3}-x+\frac{1}{3}=-\frac{3}{2}x+2+\frac{1}{2}x[/tex]