Respuesta :

Answer:

Factoring the expression [tex]xy^4+x^4y^4[/tex] completely we get [tex]\mathbf{xy^4(x+1)(x^2-x+1)}[/tex]

Step-by-step explanation:

We need to factor the expression [tex]xy^4+x^4y^4[/tex] completely

We need to find common terms in the expression.

Looking at the expression, we get [tex]xy^4[/tex] is common in both terms, so we can write:

[tex]xy^4+x^4y^4\\=xy^4(1+x^3)[/tex]

So, taking out the common expression we get: [tex]xy^4(1+x^3)[/tex]

Now, we can factor the term (1+x^3) or we can write (x^3+1) by using formula:

[tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]

So, we get:

[tex]xy^4(1+x^3)\\=xy^4(x^3+1)\\Applying\:the\:formula\;of\:a^3+b^3\\=xy^4(x+1)(x^2-x+1)[/tex]

Therefor factoring the expression [tex]xy^4+x^4y^4[/tex] completely we get [tex]\mathbf{xy^4(x+1)(x^2-x+1)}[/tex]