Answer:
Factoring the term [tex](5x^5) - (80x^3)[/tex] we get [tex]\mathbf{5x^3(x-4)(x+4)}[/tex]
Step-by-step explanation:
We need to factor the term [tex](5x^5) - (80x^3)[/tex]
First we can see that [tex]5x^3[/tex] is common in both terms
So, taking [tex]5x^3[/tex] common:
[tex](5x^5) - (80x^3)\\=5x^3(x^2-16)[/tex]
We can write [tex]x^2-16[/tex] as [tex](x)^2-(4)^2[/tex]
[tex]=5x^3((x)^2-(4)^2)[/tex]
Now we can solve [tex](x)^2-(4)^2[/tex] using the formula: [tex]a^2-b^2=(a+b)(a-b)[/tex]
We can write:
[tex]=5x^3((x)^2-(4)^2)\\=5x^3(x-4)(x+4)[/tex]
So, factoring the term [tex](5x^5) - (80x^3)[/tex] we get [tex]\mathbf{5x^3(x-4)(x+4)}[/tex]