Respuesta :
Answer:
There are two possible solutions for [tex]g(x)[/tex]:
[tex]g(x) = (x+3)^{2}-5[/tex]
[tex]g(x) = x^{2}-3\cdot x +4[/tex]
Step-by-step explanation:
From statement, we understand that [tex]g(x)[/tex] is defined by the following operation:
[tex]g(x) = f(x) +5[/tex] (1)
If we know that [tex]f(x) = (x+3)^{2}-10[/tex], then [tex]g(x)[/tex] is defined by:
[tex]g(x) = (x+3)^{2}-10+5[/tex]
[tex]g(x) = (x+3)^{2}-5[/tex]
[tex]g(x) = x^{2}-3\cdot x + 9 -5[/tex]
[tex]g(x) = x^{2}-3\cdot x +4[/tex]