What carpet Burns in a deficiency of O2 a mixture of CO and CO2 forms.Carbon Burns in excess O2 to form only CO2 and CO Burns in excess O2 to form only CO2. Calculate ΔH for C(graphite +1/2O2) →CO(g).

Respuesta :

Answer:

Explanation:

From the combustion of carbon, the reactions occurring in limited oxygen conditions are:

[tex]C(graphite) + \dfrac{1}{2}O_{2(g)} \to CO_{(g)}[/tex]  

[tex]C(graphite) + O_{2(g)} \to CO_{2(g)}[/tex]  

If it occurs in excess, then any leftover CO changes to CO2. i.e.

[tex]C(graphite) + O_{2(g)} \to CO_{2(g)}[/tex]   ---- (1)

[tex]CO_{(g)} + \dfrac{1}{2}O_{(g)} \to CO_{2(g)}[/tex]          ----- (2)

From (1), the enthalpy change is:

[tex]\Delta H_{rxn1} = \Delta H^0_{fCO_2(g)} - ( \Delta H^0_{f C(graphite)}+ \Delta H^0_{fCO_2(g)}[/tex]

[tex]\Delta H_{rxn1} =-393.5 \ kJ/mol -(0+0)[/tex]

[tex]\Delta H_{rxn1} =-393.5 \ kJ/mol[/tex]

From (2), the enthalpy change is:

[tex]\Delta_{rxn2} = \Delta H^0_{fCO_2(g)} - ( \Delta H^0_{fCO(g)} + \dfrac{1}{2} \Delta H^0_{fO_2(g)})[/tex]

[tex]\Delta_{rxn2} = -393.5 \ kJ/mol -(-110.5 + \dfrac{1}{2}(0))[/tex]

[tex]\Delta_{rxn2} = -283.0 \ kJ/mol[/tex]

Subtracting (2) from (1), we get:

[tex]C(graphite) + O_{2(g)} \to CO_{2(g)} \ \ \ \Delta H_{rxn} = -393.5 \ kJ/mol}[/tex]

[tex]CO_{(g)} + \dfrac{1}{2} O_2(g) \to CO_{2(g)}} \ \ \ \Delta H _{rxn2} = -283.0 \ kJ/mol[/tex]

                                                                                                   

[tex]C(graphite) + O_{2(g)} \to CO (g) + \dfrac{1}{2}O_{2(g)} \ \ \ \Delta H_{rxn} = -110.5 \ kJ/mol[/tex]

[tex]C(graphite) + \dfrac{1}{2} O_{2(g)} \to CO (g) \ \ \ \Delta H_{rxn} = -110.5 \ kJ/mol[/tex]

The enthalpy change ΔH of the reaction = -110.5 kJ/mol