Answer:
26880 ways
Step-by-step explanation:
Given
[tex]Crust = 4[/tex]
[tex]Toppings = 10[/tex]
[tex]Cheese = 8[/tex]
Required
Determine the number of ways 3 toppings and 3 cheese can be selected
The number of crusts to be selected was not stated. So, I'll assume 1 crust to be selected from 4.
This can be done in [tex]^4C_1[/tex] ways
For the toppings:
3 can be selected from 10 in [tex]^{10}C_3[/tex] ways
For the cheeses:
3 can be selected from 8 in [tex]^{8}C_3[/tex] ways
Total number of selection is:
[tex]Total = ^4C_1 * ^{10}C_3 * ^{8}C_3[/tex]
Apply combination formula:
[tex]Total = \frac{4!}{(4-1)!1!} * \frac{10!}{(10-3)!3!} * \frac{8!}{(8-3)!3!}[/tex]
[tex]Total = \frac{4!}{3!1!} * \frac{10!}{7!3!} * \frac{8!}{5!3!}[/tex]
[tex]Total = \frac{4*3!}{3!*1} * \frac{10*9*8*7!}{7!*3*2*1} * \frac{8*7*6*5!}{5!*3*2*1}[/tex]
[tex]Total = \frac{4}{1} * \frac{10*9*8}{3*2*1} * \frac{8*7*6}{3*2*1}[/tex]
[tex]Total = 4 * \frac{720}{6} * \frac{336}{6}[/tex]
[tex]Total = 4 * 120* 56[/tex]
[tex]Total = 26880[/tex]
Hence, there are 26880 ways