Respuesta :

Answer:

x = 10; y = 10

Step-by-step explanation:

[tex] \sin(theta) = \frac{opposite}{hypotenuse} [/tex]

[tex] \cos( {theta} ) = \frac{adjacent}{hypotenuse} [/tex]

[tex] \tan( {theta} ) = \frac{opposite}{adjacent} [/tex]

theta = 45°

opposite = x

hypotenuse = 10√2

adjacent = y

1) find x using sin formula

[tex] \sin(theta) = \frac{opposite}{hypotenuse} [/tex]

[tex] \sin(45) = \frac{x}{10 \sqrt{2} } [/tex]

[tex] \sin(45) \times 10 \sqrt{2} = x[/tex]

[tex]10 = x[/tex]

[tex]x = 10[/tex]

2) find y using cos formula

[tex] \cos( {theta} ) = \frac{adjacent}{hypotenuse} [/tex]

[tex] \cos(45) = \frac{y}{10 \sqrt{2} } [/tex]

[tex] \cos(45) \times 10 \sqrt{2} = y[/tex]

[tex]10 = y[/tex]

[tex]y = 10[/tex]