Respuesta :
Answer:
[tex]\displaystyle \int {\frac{1}{\sqrt{x} \sqrt{1-x} } } \, dx = 2arcsin(\sqrt{x}) + C[/tex]
General Formulas and Concepts:
Calculus
- U-Substitution
- Integration Property: [tex]\int {cf(x)} \, dx = c\int {f(x)} \, dx[/tex]
- Arctrig Integration: [tex]\displaystyle \int\limits {\frac{1}{\sqrt{a^2-u^2} } } \, du = arcsin(\frac{u}{a} ) + C[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \int\limits {\frac{1}{\sqrt{x} \sqrt{1-x} } } \, dx[/tex]
Step 2: Identify
Set up variables for u-substitution and integral trig.
[tex]\displaystyleu = \sqrt{x}\\a = 1\\du = \frac{1}{2\sqrt{x}}dx[/tex]
Step 3: integrate
- Rewrite Integral: [tex]\displaystyle 2\int {\frac{1}{2\sqrt{x} \sqrt{1-x} } } \, dx[/tex]
- [Integral] U-Substitution: [tex]\displaystyle 2\int {\frac{du}{\sqrt{1^2-(\sqrt{x})^2 } }[/tex]
- [Integral] U-Sub Arctrig: [tex]\displaystyle 2\int {\frac{du}{\sqrt{1^2-u^2 } }[/tex]
- [Integral] Arctrig: [tex]\displaystyle 2arcsin(\frac{u}{1}) + C[/tex]
- Simplify: [tex]\displaystyle 2arcsin(u) + C[/tex]
- Back-substitute: [tex]\displaystyle 2arcsin(\sqrt{x} ) + C[/tex]
We are given the expression:
[tex]\int\limits {\frac{1}{\sqrt[]{x} }*\frac{1}{\sqrt[]{ 1-x^{2}}} } \, dx[/tex]
U-substitution:
let u = [tex]x^{1/2}[/tex] [So, x = u²]
[tex]\frac{du}{dx} = \frac{1}{2\sqrt[]{x}}[/tex] [differentiating both sides wrt x]
dx = du*2√(x)
dx = 2u(du) [Since u = √x]
Finding the Integral:
Plugging these values in the given expression:
[tex]\int\limits {u^{-1}*(1-u^{2})^{-1/2} } \, 2\sqrt[]{x}*du[/tex]
[tex]\int\limits {\frac{1}{u}*\frac{1}{\sqrt[]{ 1-u^{2}}}*2u } \, du[/tex]
The 'u' in the numerator and denominator will cancel out
[tex]\int\limits {\frac{1}{\sqrt[]{ 1-u^{2}}}*2 } \, du[/tex]
Since 2 is a constant
[tex]2\int\limits {\frac{1}{\sqrt[]{ 1-u^{2}}} } \, du[/tex]
Using the property: [tex]\int\limits {\frac{1}{\sqrt[]{1-x^{2}} }} \, dx[/tex] = ArcSin(x) + C
2*ArcSin(u) + C
Since u = √x :
2*ArcSin(√x) + C