Respuesta :

Answer:

Left hand Limit = Right Hand Limit = f(a)

it is a continuous function.

Step-by-step explanation:

Solution:

In order to find out the continuity of the function, we need to keep in mind following things:

Left hand Limit = Right Hand Limit = f(a)

Where, f(x) = exists and f(a) = defined.

Data Given:

f(x) = x tan(1/x)   x [tex]\neq[/tex] 0 (this function is used when x > 0  and x<0)

f(x) = 0 when x = 0

First we have to check the Left hand Limit.

L.H.L = f(0-h) (x<0)

Lim[tex]_{x-->0^{-} }[/tex] f(x)

Lim[tex]_{x-->0^{-} }[/tex] x tan (1/x)

Put x = 0-h

Lim[tex]_{x-->0^{-} }[/tex] (0-h) tan (1/(0-h))

Lim[tex]_{x-->0^{-} }[/tex]  h tan (1/h)

Putting h = 0

(0) x  (tan(1/0)))

As we know, for tanx value is a finitely oscillatory between -∞ to +∞  

Hence, 0 x finite number then,

L.H.L = 0

Similarly,

R.H.L = f(0+h)

Lim[tex]_{x-->0^{+} }[/tex] (0+h) tan (1/(0+h))

Lim[tex]_{x-->0^{+} }[/tex] (h) tan (1/(h))

R.H.L = 0

Now, as we know, when x = 0

f(x) = 0

f(0) = 0

Left hand Limit = Right Hand Limit = f(a)

Hence, it is a continuous function.