Respuesta :

Answer:

The simplified expression of  [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex] is C

Step-by-step explanation:

Let us revise some rules of exponent

  • [tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{m+n}[/tex]
  • [tex]\frac{a^{m}}{a^{n}}[/tex] =  [tex]a^{m-n}[/tex]

Let us solve the question

∵ The expression is [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex]

→ By using the first rule above add the exponents of 7

∴  [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex] = [tex]\frac{7^{4+6}}{7^{8}}[/tex]

∴  [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex] = [tex]\frac{7^{10}}{7^{8}}[/tex]

→ By using the second rule above, subtract the exponents of 7

∵  [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex] = [tex]7^{10-8}[/tex]

∴  [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex] = 7²

The simplified expression of  [tex]\frac{7^{4}.7^{6}}{7^{8}}[/tex] is 7²