Respuesta :

Answer:

[tex]f(x)\cdot g(x)=x^3-21x^2+135x-243[/tex]

Step-by-step explanation:

We are given the two functions:

[tex]f(x)=x^2-12x+27\text{ and } g(x)=x-9[/tex]

And we want to find:

[tex]f(x)\cdot g(x)[/tex]

So, by substitution:

[tex]=(x^2-12x+27)\cdot (x-9)[/tex]

Distribute:

[tex]=(x^2-12x+27)(x)+(x^2-12x+27)(-9)[/tex]

Multiply:

[tex]=(x^3-12x^2+27x)+(-9x^2+108x-243)[/tex]

Rearrange:

[tex]=(x^3)+(-12x^2-9x^2)+(27x+108x)+(-243)[/tex]

Combine like terms:

[tex]=x^3-21x^2+135x-243[/tex]

Hence:

[tex]f(x)\cdot g(x)=x^3-21x^2+135x-243[/tex]