Respuesta :
Answer:
S = (-4, -34)
Step-by-step explanation:
T=(10, 18) is one end of the segment
the midpoint is located at (5, -8)
therefore, using the formula for midpoint, we can find the other end of the segment (point S)
Midpoint x-value = xa + (xb - xa)/2
in our case;
5 = 10 + (xb-10)/2
3 - 10 = (xb-10)/2
-7 = (xb-10)/2
-14 = xb-10
xb = -14 + 10 = - 4
Now for the y value of the midpoint:
Midpoint y-value = ya + (yb - ya)/2
in our case:
-8 = 18 + (yb - 18)/2
- 26 = (yb - 18)/2
- 52 = yb - 18
yb = -52 + 18 = -34
Then. point S is located at: S = (-4, -34)
Answer: (0, -34)
Step-by-step explanation:
[tex]M(5,-8)=(\frac{x_{1} + x_{2} }{2} ,\frac{y_{1} + y_{2} }{2})\\(5,-8)(\frac{10 + x_{2} }{2} ,\frac{18 + y_{2} }{2})[/tex]
[tex]5=(\frac{10 +x_{2} }{2})\\ 10=10+x_{2} \\-10-10\\0 = x_{2}\\x_{2} =0[/tex] [tex]-8=(\frac{18 +y_{2} }{2})\\ -16=18+y_{2} \\-18-18\\-34 = y_{2}\\y_{2} =-34[/tex]
Coordinates of point S = (0, -34)