which equation represents the function?

Answer:
[tex]y = \frac{5}{3}x +9[/tex]
Step-by-step explanation:
Given
The attached table
Required
Determine the equation
First: We calculate the slope (m)
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
Where:
[tex](x_1,y_1) = (-6,-1)[/tex]
[tex](x_2,y_2) = (0,9)[/tex]
The slope becomes:
[tex]m = \frac{9-(-1)}{0 - (-6)}[/tex]
[tex]m = \frac{9+1}{0+6}[/tex]
[tex]m = \frac{10}{6}[/tex]
[tex]m = \frac{5}{3}[/tex]
The equation is then calculated as:
[tex]y - y_2 = m(x-x_2)[/tex]
So, we have:
[tex]y - 9 = \frac{5}{3}(x - 0)[/tex]
[tex]y - 9 = \frac{5}{3}x[/tex]
Make y the subject
[tex]y = \frac{5}{3}x +9[/tex]