Respuesta :

Answer:

[tex]g(-3) = 5[/tex]

[tex]f(2) = 13[/tex]

[tex](f + g)(x) = x^2 +2x- 1[/tex]

Step-by-step explanation:

Solving (a):

[tex]g(x) = x^2 - 4[/tex]

Required

Determine g(-3)

[tex]g(x) = x^2 - 4[/tex]

Substitute -3 for x

[tex]g(-3) = (-3)^2 - 4[/tex]

[tex]g(-3) = 9- 4[/tex]

[tex]g(-3) = 5[/tex]

Solving (b):

[tex]f(x) = 3x + 7[/tex]

Required

Determine f(2)

[tex]f(x) = 3x + 7[/tex]

Substitute 2 for x

[tex]f(2) = 3*2 + 7[/tex]

[tex]f(2) = 6 + 7[/tex]

[tex]f(2) = 13[/tex]

Solving (c):

[tex]f(x) = 2x + 3[/tex]

[tex]g(x) = x^2 - 4[/tex]

Required

[tex](f + g)(x)[/tex]

In functions:

[tex](f + g)(x) = f(x) + g(x)[/tex]

So, we have:

[tex](f + g)(x) = 2x + 3 + x^2 - 4[/tex]

Collect Like Terms

[tex](f + g)(x) = x^2 +2x- 4+3[/tex]

[tex](f + g)(x) = x^2 +2x- 1[/tex]