Answer:
[tex]H = 5200[/tex] - Hypotenuse
[tex]S_1 = 2000[/tex] - Leg 1
[tex]S_2 = 4800[/tex] - Leg 2
Step-by-step explanation:
Represent the dimensions as:
[tex]H = Hypotenuse[/tex]
[tex]Other\ Legs = \{S_1,S_2\}[/tex]
So, we have:
[tex]S_1 = 2000[/tex]
[tex]H = 400 + S_2[/tex]
Required
Determine the dimensions
Apply Pythagoras theorem
[tex]H^2 = S_1^2 + S_2^2[/tex]
This gives:
[tex](400 + S_2)^2 = 2000^2 + S_2^2[/tex]
Open bracket
[tex]160000 + 800S_2 + S_2^2 = 4000000 + S_2^2[/tex]
[tex]160000 + 800S_2 = 4000000[/tex]
Collect Like Terms
[tex]800S_2 = 4000000 - 160000[/tex]
[tex]800S_2 = 3840000[/tex]
Solve for S2
[tex]S_2 = \frac{3840000}{800}[/tex]
[tex]S_2 = 4800[/tex]
Recall that:
[tex]H = 400 + S_2[/tex]
[tex]H = 400 + 4800[/tex]
[tex]H = 5200[/tex]
Hence, the dimensions are:
[tex]H = 5200[/tex]
[tex]S_1 = 2000[/tex]
[tex]S_2 = 4800[/tex]