Respuesta :

Answer:

[tex]y= x - 300[/tex]

[tex]y = -246[/tex] -- Her equivalent weight on earth

Step-by-step explanation:

Given

The attached table

Required

Fill in the gaps

(a) The equation

First, we calculate the slope (m)

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

From the table, we can say that:

[tex](x_1,y_1) = (0,-300)[/tex]

[tex](x_2,y_2) = (300,0)[/tex]

So, we have:

[tex]m = \frac{0 -(-300)}{300 - 0}[/tex]

[tex]m = \frac{0 +300}{300}[/tex]

[tex]m = \frac{300}{300}[/tex]

[tex]m = 1[/tex]

The equation is then calculated using:

[tex]y - y_1 = m(x - x_1)[/tex]

This gives:

[tex]y - (-300) = 1(x - 0)[/tex]

[tex]y +300 = 1(x)[/tex]

[tex]y +300 = x[/tex]

[tex]y= x - 300[/tex]

(b) When x = 54

Substitute 54 for x in [tex]y= x - 300[/tex]

[tex]y = 54 - 300[/tex]

[tex]y = -246[/tex]