Answer:
[tex]\cot{\theta} = -\frac{\sqrt{105}}{11}[/tex]
Step-by-step explanation:
Fundamental identities:
These following trigonometric identities are used to solve this question:
[tex]\sin^{2}{\theta}+\cos^{2}{\theta} = 1[/tex]
[tex]\csc{\theta} = \frac{1}{\sin{\theta}}[/tex]
[tex]\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}[/tex]
With the cossecant, we can find the sine. So:
[tex]\csc{\theta} = \frac{1}{\sin{\theta}}[/tex]
[tex]\frac{11}{4} = \frac{1}{\sin{\theta}}[/tex]
[tex]11\sin{\theta} = 4[/tex]
[tex]\sin{\theta} = \frac{4}{11}[/tex]
With the sine, we find the cosine.
Since the tangent is negative, the cosine is negative. So
[tex]\sin^{2}{\theta}+\cos^{2}{\theta} = 1[/tex]
[tex](\frac{4}{11})^{2} + \cos^{2}{\theta} = 1[/tex]
[tex]\frac{16}{121} + \cos^{2}{\theta} = \frac{121}{121}[/tex]
[tex]\cos^{2}{\theta} = \frac{105}{121}[/tex]
[tex]\cos{\theta} = -\frac{\sqrt{105}}{11}[/tex]
Cotangent:
[tex]\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}[/tex]
[tex]\cot{\theta} = \frac{-\frac{\sqrt{105}}{11}}{\frac{4}{11}}[/tex]
[tex]\cot{\theta} = -\frac{\sqrt{105}}{11}[/tex]