Respuesta :

Given:

A piecewise function

[tex]f(x)=\begin{cases}3 &,x<0 \\ x^2+2 &,0\leq x<2 \\ \dfrac{1}{2}x+5 &,x\geq 2 \end{cases}[/tex]

To find:

The range of the function.

Solution:

Range is the set of output values.

For [tex]x<0[/tex], the function is [tex]f(x)=3[/tex]       ...(i)

For [tex]0\leq x<2[/tex], the function is [tex]f(x)=x^2+2[/tex].

[tex]0\leq x<2[/tex]

Squaring each side.

[tex]0^2\leq x^2<2^2[/tex]

Adding 2 on each side.

[tex]0+2\leq x^2+2<4+2[/tex]

[tex]2\leq f(x)<6[/tex]               ...(ii)

For [tex]x\geq 2[/tex], the function is [tex]f(x)=\dfrac{1}{2}x+5[/tex].

[tex]x\geq 2[/tex]

Divide both sides by 2.

[tex]\dfrac{1}{2}x\geq 1[/tex]

Adding 5 on each side.

[tex]\dfrac{1}{2}x+5\geq 1+5[/tex]

[tex]f(x)\geq 6[/tex]                 ...(iii)

From (i), (ii) and (iii), it is clear that the values of f(x) lies in the interval [2,∞).

So, the range of the given function is [2,∞).

Therefore, the correct option is b.

correct answer is B

Life is a high way i wan to drive it all night long.