contestada

A man walks for x hours at a speed of
(x + 1) km/h and cycles for (x - 1) hours at
a speed of (2x + 5) km/h. If the total distance
travelled is 90 km, x

Respuesta :

Given:

A man walks for x hours at a speed of  (x + 1) km/h and cycles for (x - 1) hours at  a speed of (2x + 5) km/h.

Total distance  travelled is 90 km.

To find:

The value of x.

Solution:

We know that,

[tex]Speed=\dfrac{Distance}{Time}[/tex]

[tex]Speed\times Time=Distance[/tex]

A man walks for x hours at a speed of  (x + 1) km/h, so walking distance is

[tex]D_1=(x+1)(x)[/tex] km

The man cycles for (x - 1) hours at  a speed of (2x + 5) km/h, so the cycling distance is

[tex]D_2=(2x+5)(x-1)[/tex] km

Now,

Total distance = 90 km

[tex]D_1+D_2=90[/tex]

[tex](x+1)x+(2x+5)(x-1)=90[/tex]

[tex]x^2+x+2x^2-2x+5x-5-90=0[/tex]

[tex]3x^2+4x-95=0[/tex]

[tex]3x^2+19x-15x-95=0[/tex]

[tex]x(3x+19)-5(3x+19)=0[/tex]

[tex](3x+19)(x-5)=0[/tex]

[tex]3x+19=0\text{ and }x-5=0[/tex]

[tex]x=\dfrac{-19}{3}\text{ and }x=5[/tex]

Time cannot be negative. So, the only possible value of x is 5.