Respuesta :

Answer:

67[tex]\sqrt{2}[/tex]

Step-by-step explanation:

Assuming you require to simplify the expression.

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplifying the radicals

[tex]\sqrt{72}[/tex] = [tex]\sqrt{36(2)}[/tex] = [tex]\sqrt{36}[/tex] × [tex]\sqrt{2}[/tex] = 6[tex]\sqrt{2}[/tex]

[tex]\sqrt{242}[/tex] = [tex]\sqrt{121(2)}[/tex] = [tex]\sqrt{121}[/tex] × [tex]\sqrt{2}[/tex] = 11[tex]\sqrt{2}[/tex]

Then

2[tex]\sqrt{72}[/tex] + 5[tex]\sqrt{242}[/tex]

= 2(6[tex]\sqrt{2}[/tex] ) + 5(11[tex]\sqrt{2}[/tex] )

= 12[tex]\sqrt{2}[/tex] + 55[tex]\sqrt{2}[/tex]

= 67[tex]\sqrt{2}[/tex]