Answer:
67[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Assuming you require to simplify the expression.
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplifying the radicals
[tex]\sqrt{72}[/tex] = [tex]\sqrt{36(2)}[/tex] = [tex]\sqrt{36}[/tex] × [tex]\sqrt{2}[/tex] = 6[tex]\sqrt{2}[/tex]
[tex]\sqrt{242}[/tex] = [tex]\sqrt{121(2)}[/tex] = [tex]\sqrt{121}[/tex] × [tex]\sqrt{2}[/tex] = 11[tex]\sqrt{2}[/tex]
Then
2[tex]\sqrt{72}[/tex] + 5[tex]\sqrt{242}[/tex]
= 2(6[tex]\sqrt{2}[/tex] ) + 5(11[tex]\sqrt{2}[/tex] )
= 12[tex]\sqrt{2}[/tex] + 55[tex]\sqrt{2}[/tex]
= 67[tex]\sqrt{2}[/tex]