Answer:
[tex]x = 39\frac{1}{4}[/tex]
Step-by-step explanation:
Given
[tex]Total\ Distance = 124\ miles[/tex]
[tex]First\ hour = 45\frac{1}{2}[/tex]
Required
Determine the distance covered in the last hour
Since the distance in the last 2 hours are the same. Represent the distance in each of the remaining hours as x.
So:
[tex]First\ Hour + Second\ Hour + Third\ Hour = Total[/tex]
[tex]45\frac{1}{2} + x + x = 124[/tex]
[tex]45\frac{1}{2} + 2x = 124[/tex]
Collect Like Terms
[tex]2x = 124 - 45\frac{1}{2}[/tex]
[tex]2x = 124 - \frac{91}{2}[/tex]
Take LCK
[tex]2x = \frac{248-91}{2}[/tex]
[tex]2x = \frac{157}{2}[/tex]
Divide both sides by 2
[tex]x = \frac{157}{2} * \frac{1}{2}[/tex]
[tex]x = \frac{157}{4}[/tex]
[tex]x = 39\frac{1}{4}[/tex]
Hence, the distance in the third lap is: [tex]x = 39\frac{1}{4}[/tex]