determine the standard form of the equation of the line that passes through (6,0) and (2,-7). (-7x-4y=-42) (7x-4y=42) (-7x+4y=42) (4x+7y=-42)​

Respuesta :

Answer:

[tex]7x - 4y = 42[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (6,0)[/tex]

[tex](x_2,y_2) = (2,-7)[/tex]

Required

Determine the equation in standard form

First, calculate the slope (m) using:

[tex]m = \frac{y_2 -y_1}{x_2 - x_1}[/tex]

This gives:

[tex]m = \frac{-7 -0}{2 - 6}[/tex]

[tex]m = \frac{-7}{-4}[/tex]

[tex]m = \frac{7}{4}[/tex]

The equation in standard form is calculated using:

[tex]y - y_1 = m(x - x_1 )[/tex]

This gives:

[tex]y - 0 = \frac{7}{4}(x - 6)[/tex]

[tex]y = \frac{7}{4}(x - 6)[/tex]

Cross Multiply

[tex]4y = 7(x - 6)[/tex]

Open bracket

[tex]4y = 7x - 42[/tex]

Subtract 7x from both sides

[tex]-7x + 4y = 7x - 7x - 42[/tex]

[tex]-7x + 4y = - 42[/tex]

Multiply through by -1

[tex]-1(-7x + 4y) = - 42*-1[/tex]

[tex]7x - 4y = 42[/tex]