there were 135 wagons in two station together.
after they moved 45 wagon from the first station to the second station, and 36 wagon from the second station to the first station,
it turned out, that now there were
1 1/2 (3/2) times more wagons in first station, than in second station.
question: how many wagons were on each station in the beginning?
(I need detailed answer please, and I'll mark u as brainliest )

Respuesta :

Answer:

[tex]The\ number\ of\ wagons\ on\ Station\ A\ at\ the\ beginning\ = 90\\ The\ number\ of\ wagons\ on\ Station\ B\ at\ the\ beginning\ =45[/tex]

Step-by-step explanation:

[tex]We\ are\ given:\\Total\ no.\ of\ wagons\ in\ both\ the\ stations=135\ wagons\\Now,\\Let\ both\ the\ stations\ be\ denoted\ as\ Station\ A\ and\ Station\ B.\\\\Let\ the\ number\ of\ wagons\ on\ Station\ A\ at\ the\ beginning\ be\ x\\Let\ the\ number\ of\ wagons\ on\ Station\ B\ at\ the\ beginning\ be\ y\\Hence,\\We\ are\ also\ given\ that,\\Number\ of\ wagons\ that\ removed\ from\ Station\ A=45\\Number\ of\ wagons\ that\ were\ added\ to\ Station\ A=36\\Similarly,\\[/tex]

[tex]Number\ of\ wagons\ that\ removed\ from\ Station\ B=36\\Number\ of\ wagons\ that\ were\ added\ to\ Station\ B=45\\Hence,\\The\ final\ number\ of\ wagons\ in\ Station\ A=x-45+36=x-9\\The\ final\ number\ of\ wagons\ in\ Station\ B=x+45-36=y+9\\Now,\\As\ we\ already\ know,\\No.\ of\ wagons\ in\ Station\ A\ at\ the\ beginning\\ +No.\ of\ wagons\ in\ Station\ B\ at\ the\ beginning=135\\Hence,\\x+y=135\\y=(135-x)\\Hence,\\The\ final\ number\ of\ wagons\ in\ Station\ B=y+9=(135-x)+9=(144-x)[/tex]

[tex]We\ are\ also\ given\ that,\\Final\ number\ of\ wagons\ in\ Station\ A=\frac{3}{2}* Final\ number\ of\ wagons\\ in\ Station\ B\\Hence,\\(x-9)=\frac{3}{2}*(144-x)\\By\ simplifying:\\2(x-9)=3(144-x)\\2x-18=432-3x\\3x+2x=432+18\\5x=450\\x=\frac{450}{5}=90\\Hence,\\The\ number\ of\ wagons\ on\ Station\ A\ at\ the\ beginning\ = x=90\\ The\ number\ of\ wagons\ on\ Station\ B\ at\ the\ beginning\ =y=(135-x)=(135-90)=45[/tex]