What is the domain of the function y = 2 StartRoot x minus 5 EndRoot?
x greater-than-or-equal-to negative 5
x greater-than-or-equal-to 2
x greater-than-or-equal-to 5
x greater-than-or-equal-to 10

Respuesta :

Answer:

The domain of the function should be:

'x greater than or equal to negative -5'.

Hence, option A is true.

Step-by-step explanation:

Given the expression

[tex]2\sqrt{x-5}[/tex]

The domain of a function is the set of input or arguments for which the function is real and defined

We know that the value, inside the radicand, is the number found inside a radical symbol which must be greater than 0, otherwise, it would make the function undefined,

i.e.

x-5 ≥ 0

x ≥ 5

In other words, the domain of the function should be:

'x greater than or equal to negative -5'.

Therefore, the domain of the function:

x ≥ 5

[tex]\mathrm{Domain\:of\:}\:2\sqrt{x-5}\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\ge \:5\:\\ \:\mathrm{Interval\:Notation:}&\:[5,\:\infty \:)\end{bmatrix}[/tex]

Hence, option A is true.

Answer:

A. x greater-than-or-equal-to negative 5